
Worked analysis of owl data

Ben Bolker

March 19, 2010

©2010 Ben Bolker
Licensed under the Creative Commons attribution-noncommercial license

(http://creativecommons.org/licenses/by-nc/3.0/). Please share & remix non-

commercially, mentioning its origin.

1 Introduction/preliminaries

This is a worked example of data on begging by owl nestlings, analyzed as an
example in Zuur et al. (2009) and originally appearing in Roulin and Bersier
(2007).

Get the data: either download/install AED (http://www.highstat.com/
Book2/AED_1.0.zip) or ZuurDataMixedModelling.zip (http://www.highstat.
com/Book2/ZuurDataMixedModelling.zip) and extract the Owls data set

For example:

> download.file("http://www.highstat.com/Book2/ZuurDataMixedModelling.zip",

file="tmp.zip")

> unzip("tmp.zip",files="Owls.txt")

> Owls <- read.table("Owls.txt",header=TRUE)

or just library(AED); Data(Owls) if you’ve installed the AED package.
A quick look at the data with lattice (quicker than ggplot):
As box-whisker plot:

> library(lattice)

> print(bwplot(reorder(Nest,NegPerChick)~NegPerChick|FoodTreatment:SexParent,

data=Owls))
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As dotplot:

> print(dotplot(reorder(Nest,NegPerChick)~NegPerChick|FoodTreatment:SexParent,

data=Owls))
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2 Fitting I

Fit the data:

> library(lme4)

> g1 <- glmer(SiblingNegotiation~FoodTreatment*SexParent+offset(log(BroodSize))+

(1|Nest),family=poisson,data=Owls)

> print(summary(g1))

Generalized linear mixed model fit by the Laplace approximation
Formula: SiblingNegotiation ~ FoodTreatment * SexParent + offset(log(BroodSize)) + (1 | Nest)

Data: Owls
AIC BIC logLik deviance
3532 3554 -1761 3522
Random effects:
Groups Name Variance Std.Dev.
Nest (Intercept) 0.20631 0.45421
Number of obs: 599, groups: Nest, 27

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
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(Intercept) 0.65584 0.09564 6.857 7.03e-12 ***
FoodTreatmentSatiated -0.65612 0.05612 -11.691 < 2e-16 ***
SexParentMale -0.03705 0.04506 -0.822 0.4110
FoodTreatmentSatiated:SexParentMale 0.13130 0.07047 1.863 0.0624 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr) FdTrtS SxPrnM

FdTrtmntStt -0.227
SexParentMl -0.293 0.490
FdTrtmS:SPM 0.171 -0.768 -0.605

Check for overdispersion (Pearson residuals):

> rdev <- sum(residuals(g1)^2)

> mdf <- length(fixef(g1))

> rdf <- nrow(Owls)-mdf ## residual df [NOT accounting for random effects]

> rdev/rdf

[1] 5.630751

Overdispersion is quite a bit > 1 . . . significance test:

> (prob.disp <- pchisq(rdev,rdf,lower.tail=FALSE,log.p=TRUE))

[1] -868.7967

Rather unlikely! (This is a log probability, corresponding to p ≈ 10−377.)
Here (with a hacked version of lme4 that allows per-observation random

effects, i.e. a Poisson-lognormal distribution):

> Owls$obs <- 1:nrow(Owls) ## add observation number to data

> g2 <- glmer(SiblingNegotiation~FoodTreatment*SexParent+offset(log(BroodSize))+

(1|Nest)+(1|obs),family=poisson,data=Owls)

> print(summary(g2))

Generalized linear mixed model fit by the Laplace approximation
Formula: SiblingNegotiation ~ FoodTreatment * SexParent + offset(log(BroodSize)) + (1 | Nest) + (1 | obs)

Data: Owls
AIC BIC logLik deviance
1882 1908 -934.9 1870
Random effects:
Groups Name Variance Std.Dev.
obs (Intercept) 1.24111 1.11405
Nest (Intercept) 0.22745 0.47692
Number of obs: 599, groups: obs, 599; Nest, 27
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Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.2875 0.1518 1.894 0.0582 .
FoodTreatmentSatiated -1.1106 0.1732 -6.411 1.45e-10 ***
SexParentMale 0.0180 0.1518 0.119 0.9056
FoodTreatmentSatiated:SexParentMale 0.1797 0.2206 0.815 0.4152
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr) FdTrtS SxPrnM

FdTrtmntStt -0.521
SexParentMl -0.624 0.527
FdTrtmS:SPM 0.395 -0.766 -0.649

Considerable variation at both levels.
Examine residuals:

> plot(fitted(g2),residuals(g2))

> rvec <- seq(0,30,length=101)

> lines(rvec,predict(loess(residuals(g2)~fitted(g2)),newdata=rvec),

col=2,lwd=2)

> abline(h=0,col="gray")
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Oops . . . the data didn’t scream“zero-inflated”on first investigation, but now
it seems as though they probably are (this is based also on a hint from Alain
Zuur).

is there a reasonably standard graphical diagnostic for zero-inflation? this
graph seems pretty obvious, but maybe there’s something clearer

Deal with zero-inflation: MCMCglmm, glmm.admb, . . .
Plot residuals vs predictors (i.e. in this case by group (boxplot?)); plot ran-

dom effects

2.1 Plot predictions and confidence intervals

Proceeding as though the plot of residuals had not revealed a problem with the
model . . .

> library(ggplot2)

> G0 <- ggplot(Owls,aes(x=reorder(Nest,NegPerChick),

y=NegPerChick))+

xlab("Nest")+ylab("Negotiations per chick")+coord_flip()+

facet_grid(FoodTreatment~SexParent)

> ## boxplot display

> G1 <- G0+ geom_boxplot()

> ## dotplot display (I prefer this one)

> G2 <- G0+stat_sum(aes(size=factor(..n..)),alpha=0.5)+

theme_bw()

Since there is no predict method for glmer, we’ll do it by hand. (For nest
size=1 we have offset=0 so prediction will produces negotations/chick.)

> ## set up prediction frame

> pframe0 <- with(Owls,expand.grid(SexParent=levels(SexParent),

FoodTreatment=levels(FoodTreatment)))

> ## construct model matrix

> mm <- model.matrix(~FoodTreatment*SexParent,data=pframe0)

> ## predictions from each model; first construct linear

> ## predictor, then transform to raw scale

> pframe1 <- data.frame(pframe0,eta=mm%*%fixef(g1))

> pframe1 <- with(pframe1,data.frame(pframe1,NegPerChick=exp(eta)))

> pframe2 <- data.frame(pframe0,eta=mm%*%fixef(g2))

> pframe2 <- with(pframe2,data.frame(pframe2,NegPerChick=exp(eta)))

We are using exp(eta) (and analogous code below) because we have used
the default log link for the Poisson model. In general we will use the inverse-link
function (e.g. plogis for logit link, the default for binomial data).

Confidence intervals: we already have the model matrix X for the points we
want to predict, so we just need XVXT to compute the per-point variances:
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> pvar1 <- diag(mm %*% tcrossprod(vcov(g1),mm))

> pvar2 <- diag(mm %*% tcrossprod(vcov(g2),mm))

Add the variance due to among-nest variation. (This is intercept variation
only, so we can just add the variance. If the among-nest variation affected more
than the intercept, we would have to set up a design matrix and do a similar
calculation to the one above.)

> tvar1 <- pvar1+VarCorr(g1)$Nest

> tvar2 <- pvar2+VarCorr(g2)$Nest

Attach standard errors, and computed confidence intervals, to prediction
frames:

> pframe1 <- data.frame(pframe1,pse=sqrt(pvar1),tse=sqrt(tvar1))

> pframe1 <- with(pframe1,

data.frame(pframe1,

plo=exp(eta-1.96*pse),

phi=exp(eta+1.96*pse),

tlo=exp(eta-1.96*tse),

thi=exp(eta+1.96*tse)))

> pframe2 <- data.frame(pframe2,pse=sqrt(pvar2),tse=sqrt(tvar2))

> pframe2 <- with(pframe2,

data.frame(pframe2,

plo=exp(eta-1.96*pse),

phi=exp(eta+1.96*pse),

tlo=exp(eta-1.96*tse),

thi=exp(eta+1.96*tse)))

Basing confidence limits on ±1.96σ may be anticonservative in the finite-
Plot the results. Here I am plotting the predicted values for both models, as

well as confidence intervals based on estimates of parameter error plus among-
nest variance (tlo and thi). These are the confidence intervals on the means
of a randomly selected nest in each category. I would use plo and phi to
compute the confidence interval on the mean of an “average” nest, nest (i.e. not
incorporating among-nest variation). If I wanted to compute prediction intervals
I would probably have to do it by simulation, picking (multivariate) normally
distributed values from the sampling distribution of the parameters and then
simulating Poisson errors on top.

> print(G2 +

geom_hline(data=pframe1,aes(yintercept=NegPerChick),col="red")+

geom_hline(data=pframe2,aes(yintercept=NegPerChick),col="blue")+

geom_rect(aes(xmin=0,xmax=28,ymin=tlo,ymax=thi,x=NULL),

data=pframe1,fill="red",alpha=0.3)+

geom_rect(aes(xmin=0,xmax=28,ymin=tlo,ymax=thi,x=NULL),

data=pframe2,fill="blue",alpha=0.3))
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> library(geepack)

> g3 <- geeglm(SiblingNegotiation~FoodTreatment*SexParent+offset(log(BroodSize)),

corstr="exchangeable",id=Nest,

family=poisson,data=Owls)

> g4 <- MASS::glmmPQL(SiblingNegotiation~FoodTreatment*SexParent+

offset(log(BroodSize)),

random=~1|Nest,

family=poisson,data=Owls)

> g5 <- update(g4,family=quasipoisson)

> g6 <- update(g4,random=~1|Nest/obs)

> detach("package:nlme")

The values of the coefficients change, but the qualitative conclusion (we can
detect a strong effect of satiation, but not too much else) remains the same.

> mtab1 <- modelTab(g1,g2,g3,horiz=TRUE)

> library("nlme")

> mtab2 <- modelTab(g4,g5,g6,horiz=TRUE)

> cbind(mtab1,mtab2)

[,1] [,2] [,3] [,4] [,5] [,6]
(Intercept) 0.656 0.288 0.659 0.654 0.654 0.654
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FoodTreatmentSatiated -0.656 -1.111 -0.599 -0.620 -0.620 -0.620
SexParentMale -0.037 0.018 0.001 -0.008 -0.008 -0.008
FoodTreatmentSatiated:SexParentMale 0.131 0.180 0.095 0.117 0.117 0.117

> detach("package:nlme")

3 To do

� Other packages.

� Confidence intervals

� Diagnostics: zero-inflation?

� QAIC etc.?

> library(MCMCglmm)

> MCMCglmm()
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